Biased estimates in the trajectory tracking problem: the determination of the lower bound of their accuracy

Dmitrii Bedin

N.N. Krasovskii Institute of Mathematics and Mechanics (IMM UB RAS)

Trajectories of aircrafts are close to straight lines and circles.

Approximate planar dynamics:

$$\begin{cases} \dot{x}_N = v \cos \varphi \,, \\ \dot{x}_E = v \sin \varphi \,, \\ \dot{\varphi} = a^{ort} / v \,, \\ \dot{v} = a^{tng} \,. \end{cases}$$

- x_N , x_E are the Cartesian coordinates in plane;
- v, φ are the aircraft speed and path angle;
- a^{tng} , a^{ort} are the tangential and orthogonal accelerations, (unknown controls!)

Typical motion types:

•
$$a^{ort}(t) = 0$$
, $a^{tng}(t) = 0$ - constant velocity (CV);

• $a^{ort}(t) = \text{const}, a^{tng}(t) = 0 - \text{coordinated turn (CT)};$

• $a^{ort}(t) = 0, a^{tng}(t) = \text{const} - \text{constant}$ acceleration (CA).

Measureable part of the phase vector

$$x = \begin{bmatrix} x_N \\ x_E \end{bmatrix}.$$

Measurement vector

$$z = \begin{bmatrix} z_N \\ z_E \end{bmatrix} = \begin{bmatrix} x_N \\ x_E \end{bmatrix} + \begin{bmatrix} w_N \\ w_E \end{bmatrix} = x + w \,.$$

Measurements are made at discrete time instants

$$z^i = x(t^i) + w^i, \qquad t^i \in \left\{t^1, t^2, t^3, \dots, t^n\right\} \eqqcolon T^n$$

.

Measurement model is simple:

$$w^i \sim \mathcal{N}(0, W^i)$$

Measurements

Trajectories

Class $\mathcal{X}^{\theta}_{switch}$: trajectories

$$x(t) = x(t; \theta_0, u_{[t_0, t]})$$

with different initial states

$$heta_0 = egin{bmatrix} x_N(t_0) \ x_E(t_0) \ arphi(t_0) \ v(t_0) \end{bmatrix}$$

and control functions

$$u_{[t_0,t)} = \left\{ \begin{bmatrix} a^{ort}(t) \\ a^{tng}(t) \end{bmatrix} : \quad t \in [t_0,t) \right\} .$$

Piecewise control functions

Vector of all parameters of the trajectory:

 $\boldsymbol{\theta} = \begin{bmatrix} \theta_0^{\mathsf{T}} & a_0^{ort} & a_0^{tng} & t_1 & a_1^{ort} & a_1^{tng} & t_2 & a_2^{ort} & a_2^{tng} & \dots \end{bmatrix}^{\mathsf{T}}$

Filtration Problem

Our aim is to make an estimate \hat{x}^n close to $x(t^n; \theta)$. We have a history of measurements up to t^n instant

$$Z^n = \begin{bmatrix} z^{1\mathsf{T}} & z^{2\mathsf{T}} & \cdots & z^{n\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$$

The estimator \hat{x}^n is a response to Z^n :

$$\hat{x}^n = \hat{x}^n(Z^n) \; .$$

Performance criterion is formulated using

$$\mathbf{E}\left\{\left(\hat{x}^{n}(Z^{n})-x(t^{n};\theta)\right)\left(\hat{x}^{n}(Z^{n})-x(t^{n};\theta)\right)^{\mathsf{T}}\right\},\$$

for example

$$\operatorname{tr}\left\{\mathbf{E}\left\{\left(\hat{x}^{n}(Z^{n})-x(t^{n};\theta)\right)\left(\hat{x}^{n}(Z^{n})-x(t^{n};\theta)\right)^{\mathsf{T}}\right\}\right\}$$

Filtration Problem

Gustafsson, F. Adaptive filtering and change detection. Wiley: 2000.

Li, X. R., Jilkov, V. A survey of maneuvering target tracking. Part IV: Decision-based methods // Proc. SPIE. 2002. Vol. 4728, pp. 511–534.

Li, X. R., Jilkov, V. A survey of maneuvering target tracking. Part V: Multiple-model methods // IEEE Trans. on AES. 2005. No. 4, pp. 1255–1321.

Bar-Shalom, Y., Li, X. R., Kirubarajan, T. Estimation with Application to Tracking and Navigation: Theory, Algorithms, and Software. New York: Wiley, 2001.

Blom, H., Bar-Shalom, Y. The interacting multiple model algorithm for systems with Markovian switching coefficients // IEEE Transactions on Automatic Control, Vol. 33, No. 8, 1988, pp. 780–783.

Gustafsson, F., et al. Particle filters for positioning, navigation, and tracking // IEEE Transactions on Signal Processing, 2002. No. 50 (2), pp. 425–437.

There exsists a way to assess a lower bound of «accuracy» of estimates without explicit construction of the best estimate.

Cauchy-Schwartz inequality:

$$\langle \varphi, \psi \rangle^2 \leqslant \langle \varphi, \varphi \rangle \langle \psi, \psi \rangle \iff \langle \varphi, \varphi \rangle \geqslant \frac{\langle \varphi, \psi \rangle^2}{\langle \psi, \psi \rangle} \quad \Big(\langle \psi, \psi \rangle \neq 0 \Big).$$

There exsists a way to assess a lower bound of «accuracy» of estimates without explicit construction of the best estimate.

Cauchy-Schwartz inequality:

$$\langle \varphi, \psi \rangle^2 \leqslant \langle \varphi, \varphi \rangle \langle \psi, \psi \rangle \iff \langle \varphi, \varphi \rangle \geqslant \frac{\langle \varphi, \psi \rangle^2}{\langle \psi, \psi \rangle} \quad \Big(\langle \psi, \psi \rangle \neq 0 \Big).$$

Replacing $\langle \varphi, \psi \rangle$ by $\mathbf{E}\{(\hat{x}^n(Z^n) - \bar{x}^n(\theta)) \psi\}$ where $\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\}$ we get:

$$\mathbf{E}\left\{\left(\hat{x}^{n}(Z^{n})-\bar{x}^{n}(\theta)\right)^{2}\right\} \geqslant \frac{\mathbf{E}\left\{\left(\hat{x}^{n}(Z^{n})-\bar{x}^{n}(\theta)\right)\psi\right\}^{2}}{\mathbf{E}\left\{\psi\psi\right\}}.$$

There exsists a way to assess a lower bound of «accuracy» of estimates without explicit construction of the best estimate.

Replacing $\langle \varphi, \psi \rangle$ by $\mathbf{E}\{(\hat{x}^n(Z^n) - \bar{x}^n(\theta)) \psi\}$ where $\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\}$ we get:

$$\mathbf{E}\left\{ (\hat{x}^n(Z^n) - \bar{x}^n(\theta))^2 \right\} \geqslant \frac{\mathbf{E}\left\{ (\hat{x}^n(Z^n) - \bar{x}^n(\theta)) \psi \right\}^2}{\mathbf{E}\left\{ \psi \psi \right\}}.$$

In vector case:

$$\begin{aligned} \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta)) \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right)^{\mathsf{T}} \Big\} &\succcurlyeq \\ &\succcurlyeq \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta)) \psi^{\mathsf{T}} \Big\} \left(\mathbf{E} \Big\{ \psi \, \psi^{\mathsf{T}} \Big\} \right)^{-1} \times \\ &\times \mathbf{E} \Big\{ \psi \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right)^{\mathsf{T}} \Big\}. \end{aligned}$$

Total MSE with the bias term has the form:

$$\mathbf{E}\left\{ \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right) \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right)^{\mathsf{T}} \right\} \succeq \\
\approx \mathbf{E}\left\{ \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right) \psi^{\mathsf{T}} \right\} \left(\mathbf{E}\left\{ \psi \, \psi^{\mathsf{T}} \right\} \right)^{-1} \times \\
\times \mathbf{E}\left\{ \psi \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right)^{\mathsf{T}} \right\} + \\
+ \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right)^{\mathsf{T}}.$$

In Bayesian approach, there exists a distribution on θ , and the expectation means

$$\mathbf{E}\{f\} = \mathbf{E}_{\theta, Z^n}\{f\} = \int_{\theta} \int_{Z^n} f\,\rho(Z^n|\theta)\,dZ^n\tilde{\rho}(\theta)\,d\theta,$$

while, in non-Bayesian approach, the expectation concerns only disribution of measurements

$$\mathbf{E}{f} = \mathbf{E}_{Z^n}{f} = \int_{Z^n} f\,\rho(Z^n|\theta)\,dZ^n.$$

I consider non-Bayesian approach only because

I am interested in a lower bound for each particular trajectory

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta)) \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right)^{\mathsf{T}} \Big\} &\succcurlyeq \\ & \succcurlyeq \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta)) \ \psi^{\mathsf{T}} \Big\} \left(\mathbf{E} \Big\{ \psi \ \psi^{\mathsf{T}} \Big\} \right)^{-1} \times \\ & \qquad \times \mathbf{E} \Big\{ \psi \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right)^{\mathsf{T}} \Big\} \,. \end{split}$$

Different ψ 's, different lower bounds:

•
$$\psi = \frac{1}{\rho(Z^n|\theta)} \left(\frac{\partial \rho(Z^n|\theta)}{\partial \theta} \right)^{\mathsf{T}} = \left(\frac{\partial}{\partial \theta} \log \rho(Z^n|\theta) \right)^{\mathsf{T}}$$

for Cramér-Rao lower bound (CR);

•
$$\psi = \frac{\rho(Z^n|\theta') - \rho(Z^n|\theta)}{\rho(Z^n|\theta)}$$
 $\theta' \colon \exists i \ x(t^i; \theta') \neq x(t^i; \theta)$

for Hammersley-Chapman-Robbins bound (HCR).

Cramer-Rao Lower Bound. General Case

$$\psi = \frac{1}{\rho(Z^n|\theta)} \left(\frac{\partial \rho(Z^n|\theta)}{\partial \theta}\right)^{\mathsf{T}}$$

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^n(Z^n) - x(t^n;\theta)) \left(\hat{x}^n(Z^n) - x(t^n;\theta) \right)^\mathsf{T} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right)^\mathsf{T} + \\ & + \left(\bar{x}^n(\theta) - x(t^n;\theta) \right) \left(\bar{x}^n(\theta) - x(t^n;\theta) \right)^\mathsf{T}, \end{split}$$

where

$$\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\}, \qquad I(\theta) = \sum_{i=1}^n \frac{\partial x(t^i;\theta)}{\partial \theta}^\mathsf{T}(W^i)^{-1} \frac{\partial x(t^i;\theta)}{\partial \theta}.$$

Cramer-Rao Lower Bound. General Case

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^n(Z^n) - x(t^n;\theta)) \left(\hat{x}^n(Z^n) - x(t^n;\theta) \right)^\mathsf{T} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right)^\mathsf{T} + \\ & + \left(\bar{x}^n(\theta) - x(t^n;\theta) \right) \left(\bar{x}^n(\theta) - x(t^n;\theta) \right)^\mathsf{T}, \end{split}$$

x̄ⁿ(θ) is vector in ℝ²;
 ∂x̄ⁿ(θ) ∂θ is matrix in ℝ^{2×d}.

Cramer-Rao Lower Bound. General Case

$$\begin{split} \min_{\hat{x}^n} \mathbf{E} \Big\{ \left(\hat{x}^n(Z^n) - x(t^n;\theta) \right) \left(\ldots \right)^\mathsf{T} \Big\} &\succcurlyeq \\ &\succcurlyeq \min_{\hat{x}^n} \left(\left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right)^\mathsf{T} + \left(\bar{x}^n(\theta) - x(t^n;\theta) \right) \left(\ldots \right)^\mathsf{T} \right) = \\ &= \min_{\bar{x}^n = \mathbf{E} \{ \hat{x}^n \}} \left(\left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} (\ldots)^\mathsf{T} + \left(\bar{x}^n(\theta) - x(t^n;\theta) \right) \left(\ldots \right)^\mathsf{T} \right) \succcurlyeq \\ &\succcurlyeq \min_{q \in \mathbb{R}^2, Q \in \mathbb{R}^{2 \times d}} \left(Q I(\theta)^{-1} Q^\mathsf{T} + \left(q - x(t^n;\theta) \right) \left(q - x(t^n;\theta) \right)^\mathsf{T} \right) \end{split}$$

CRLB, General Case. Paradox

$$\begin{split} \min_{\hat{x}^n} \mathbf{E} \Big\{ (\hat{x}^n(Z^n) - x(t^n;\theta)) (\ldots)^\mathsf{T} \Big\} &\succcurlyeq \\ &\succcurlyeq \min_{\hat{x}^n} \left(\left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right)^\mathsf{T} + (\bar{x}^n(\theta) - x(t^n;\theta)) (\ldots)^\mathsf{T} \right) = \\ &= \min_{\bar{x}^n = \mathbf{E} \{ \hat{x}^n \}} \left(\left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} (\ldots)^\mathsf{T} + (\bar{x}^n(\theta) - x(t^n;\theta)) (\ldots)^\mathsf{T} \right) \rightleftharpoons \\ &\succcurlyeq \min_{q \in \mathbb{R}^2, Q \in \mathbb{R}^{2 \times d}} \left(Q I(\theta)^{-1} Q^\mathsf{T} + (q - x(t^n;\theta)) (q - x(t^n;\theta))^\mathsf{T} \right) \\ &= 0 \: \\ \end{split}$$

since we can set Q = 0, $q = x(t^n; \theta)$.

CRLB, General Case. Paradox

This inequality is tight because constant estimates

$$\hat{x}_c^n(Z^n) = p$$

are «legal», if we consider estimates as measureable functions of Z^n (the class of measureable estimates \mathcal{K}_m).

$$\min_{\hat{x}^n} \mathbf{E} \left\{ (\hat{x}^n (Z^n) - x(t^n; \theta)) (\ldots)^\mathsf{T} \right\} \preccurlyeq$$
$$\preccurlyeq \min_{\hat{x}^n_c} \mathbf{E} \left\{ (\hat{x}^n (Z^n) - x(t^n; \theta)) (\ldots)^\mathsf{T} \right\} =$$
$$= \min_p \left(p - x(t^n; \theta) \right) \left(p - x(t^n; \theta) \right)^\mathsf{T} = 0$$

$$0 \preccurlyeq \min_{\hat{x}^n} \mathbf{E} \left\{ \left(\hat{x}^n(Z^n) - x(t^n; \theta) \right) \left(\dots \right)^\mathsf{T} \right\} \preccurlyeq 0 \implies \\ \min_{\hat{x}^n} \mathbf{E} \left\{ \left(\hat{x}^n(Z^n) - x(t^n; \theta) \right) \left(\dots \right)^\mathsf{T} \right\} = 0$$

CRLB, General Case. Paradox

This inequality is tight because constant estimates

 $\hat{x}_c^n(Z^n) = p$

are «legal», if we consider estimates as measureable functions of Z^n (the class of measureable estimates \mathcal{K}_m).

$$\min_{\hat{x}^n} \mathbf{E} \left\{ \left(\hat{x}^n (Z^n) - x(t^n; \theta) \right) (\ldots)^\mathsf{T} \right\} =$$
$$= \min_{\hat{x}^n_c} \mathbf{E} \left\{ \left(\hat{x}^n (Z^n) - x(t^n; \theta) \right) (\ldots)^\mathsf{T} \right\} =$$
$$= \min_p \left(p - x(t^n; \theta) \right) \left(p - x(t^n; \theta) \right)^\mathsf{T} = 0$$

Necessarily, there is one right choice among all!

Different Trajectories

The constant estimate $\hat{x}_c^n(Z^n) = p$ is clearly not useful for trajectories where $x(t^n; \theta) \neq p$.

Different Trajectories

An estimate have to work for all trajectories of prescribed type.

How type of formulas can we use to set such a condition?

Unbiased Estimates

The class of unbiased estimates $\mathcal{K}_u(\mathcal{X}_{switch}^{\theta})$:

$$\mathbf{E}\{\hat{x}^n(Z^n)\} \equiv x(t^n;\theta)$$

The property of unbiasedness can depend on the trajectory class; therefore, $\mathcal{K}_u(\mathcal{X}_{switch}^{\theta})$ rather then \mathcal{K}_u .

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^n(Z^n) - x(t^n;\theta)) \left(\hat{x}^n(Z^n) - x(t^n;\theta) \right)^\mathsf{T} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right)^\mathsf{T} + \\ & + \left(\bar{x}^n(\theta) - x(t^n;\theta) \right) \left(\bar{x}^n(\theta) - x(t^n;\theta) \right)^\mathsf{T}. \end{split}$$

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^n(Z^n) - x(t^n;\theta)) \left(\hat{x}^n(Z^n) - x(t^n;\theta) \right)^\mathsf{T} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial x(t^n;\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial x(t^n;\theta)}{\partial \theta} \right)^\mathsf{T}. \end{split}$$

$$I(\theta) = \sum_{i=1}^{n} \frac{\partial x(t^{i};\theta)}{\partial \theta}^{\mathsf{T}} (W^{i})^{-1} \frac{\partial x(t^{i};\theta)}{\partial \theta}$$

٠

$$\begin{cases} \dot{x}_N = v \cos \varphi \,, \\ \dot{x}_E = v \sin \varphi \,, \\ \dot{\varphi} = a^{ort} / v \,, \\ \dot{v} = a^{tng} \,. \end{cases}$$

$$\begin{cases} \dot{x}_N = v \cos \varphi \,, \\ \dot{x}_E = v \sin \varphi \,, \\ \dot{\varphi} = a^{ort} / v \,, \\ \dot{v} = a^{tng} \,. \end{cases}$$

 $\boldsymbol{\theta} = \begin{bmatrix} \theta_0^{\mathsf{T}} & a_0^{ort} & a_0^{tng} & t_1 & a_1^{ort} & a_1^{tng} & t_2 & a_2^{ort} & a_2^{tng} & \dots \end{bmatrix}^{\mathsf{T}}.$

$$\begin{cases} \dot{x}_N = v \cos \varphi ,\\ \dot{x}_E = v \sin \varphi ,\\ \dot{\varphi} = a^{ort} / v ,\\ \dot{v} = a^{tng} . \end{cases}$$

$$\theta = \begin{bmatrix} \theta_0^{\mathsf{T}} & a_0^{ort} & a_0^{tng} & t_1 & a_1^{ort} & a_1^{tng} & t_2 & a_2^{ort} & a_2^{tng} & \dots \end{bmatrix}^{\mathsf{T}}.$$

$$\frac{\partial x_N(t)}{\partial a^{ort}} = \frac{\partial b}{\partial a^{ort}} \left(v(t)^2 \cos \varphi(t) - v_0^2 \cos \varphi_0 \right) + \\ + \frac{\partial c}{\partial a^{ort}} \left(v(t)^2 \sin \varphi(t) - v_0^2 \sin \varphi_0 \right) - \\ - \frac{\partial \varphi(t)}{\partial a^{ort}} v(t)^2 \left(b \sin \varphi(t) - c \cos \varphi(t) \right)$$

$$\theta = \begin{bmatrix} \theta_0^{\mathsf{T}} & a_0^{ort} & a_0^{tng} & t_1 & a_1^{ort} & a_1^{tng} & t_2 & a_2^{ort} & a_2^{tng} & \dots \end{bmatrix}^{\mathsf{T}}.$$

$$\frac{\partial x_N(t)}{\partial a^{ort}} = \frac{\partial b}{\partial a^{ort}} \left(v(t)^2 \cos \varphi(t) - v_0^2 \cos \varphi_0 \right) + \\ + \frac{\partial c}{\partial a^{ort}} \left(v(t)^2 \sin \varphi(t) - v_0^2 \sin \varphi_0 \right) - \\ - \frac{\partial \varphi(t)}{\partial a^{ort}} v(t)^2 \left(b \sin \varphi(t) - c \cos \varphi(t) \right)$$

$$c = \frac{a^{ort}}{(a^{ort})^2 + (2a^{tng})^2}, \quad b = \frac{2a^{tng}}{(a^{ort})^2 + (2a^{tng})^2}$$
$$\frac{\partial \varphi(t)}{\partial a^{ort}} = \begin{cases} \frac{1}{a^{tng}} \ln \frac{v(t)}{v_0}, & a^{tng} \neq 0, \\ \frac{(t-t^0)}{v_0}, & a^{tng} = 0, \end{cases}$$

IMM Method vs. CRLB, Unbiased

IMM Method vs. CRLB, Unbiased

IMM Method vs. CRLB, Unbiased

IMM Method vs. CRLB, Unbiased

IMM Method vs. CRLB, Unbiased

IMM Method vs. CRLB, Unbiased

The IMM method produce biased estimates:

Trajectory variations

Trajectory variations

Hammersley-Chapman-Robbins Lower Bound

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - x(t^{n};\theta)) \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right)^{\mathsf{T}} \Big\} &\succcurlyeq \\ &\succcurlyeq \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta)) \psi^{\mathsf{T}} \Big\} \left(\mathbf{E} \Big\{ \psi \, \psi^{\mathsf{T}} \Big\} \right)^{-1} \times \\ &\times \mathbf{E} \Big\{ \psi \left(\hat{x}^{n}(Z^{n}) - \bar{x}^{n}(\theta) \right)^{\mathsf{T}} \Big\} + \\ &+ \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right)^{\mathsf{T}}. \end{split}$$

Hammersley-Chapman-Robbins Lower Bound

$$\forall \theta' \colon \exists i \ x(t^{i}; \theta') \neq x(t^{i}; \theta), \\ \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - x(t^{n}; \theta)) (\ldots)^{\mathsf{T}} \Big\} \succcurlyeq \frac{(x(t^{n}; \theta') - x(t^{n}; \theta)) (\ldots)^{\mathsf{T}}}{\mathbf{E} \Big\{ \Big(\frac{\rho(Z^{n}|\theta')}{\rho(Z^{n}|\theta)} - 1 \Big)^{2} \Big\}}.$$

$$\mathbf{E}\left\{ \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right) \left(\ldots \right)^{\mathsf{T}} \right\} \succeq \frac{\left(x(t^{n};\theta') - x(t^{n};\theta) \right) \left(\ldots \right)^{\mathsf{T}}}{e^{\left(\sum\limits_{j=1}^{n} \left(x(t^{j};\theta') - x(t^{j};\theta) \right)^{\mathsf{T}}(W^{j})^{-1} \left(x(t^{j};\theta') - x(t^{j};\theta) \right) \right)} - 1}.$$

MSE Lower Bound for Unbiased Estimates

MSE Lower Bound for Unbiased Estimates

Statement If • $\hat{x}^n \in \mathcal{K}_u(\mathcal{X}^{\theta}_{switch})$ (i.e. $\mathbf{E}\{\hat{x}^n(Z^n)\} \equiv x(t;\theta)$), • $\dim(X^n) = \dim z$, • $x(t^n;\theta) \in \operatorname{int} X^n$ or $x(t^n;\theta) \in \partial X^n$ and ∂X^n at $x(t^n;\theta)$ is smooth then

$$\mathbf{E}\left\{\left(\hat{x}^{n}(Z^{n})-x(t^{n};\theta)\right)(\ldots)^{\mathsf{T}}\right\} \succeq W^{n}.$$

 $W^n = \mathbf{Var}\{z^n\}$ is the covariation matrix of the last measurement.

$$\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\} \equiv x(t^n;\theta)$$

$$\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\} \neq x(t^n;\theta)$$

$$\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\} \neq x(t^n;\theta)$$

Consider affine transforms:

$$z_p^i = s_p(z^i) = B_p z^i + b_p$$
, $S_p(Z^n) = \{z_p^i : i = 1, ..., n\}$.

$$\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\} \neq x(t^n;\theta)$$

Consider affine transforms:

$$z_p^i = s_p(z^i) = B_p z^i + b_p, \qquad \mathcal{S}_p(Z^n) = \{z_p^i : i = 1, \dots, n\}.$$

The class of equivariant estimates $\mathcal{K}_e(\mathcal{X}_{switch}^{\theta})$:

$$\hat{x}^n(\mathcal{S}_p(Z^n)) = s_p(\hat{x}^n(Z^n))$$

As a consequence:

$$\bar{x}^n(\theta) = \mathbf{E}\{\hat{x}^n(Z^n)\} \neq x(t^n;\theta)$$

Consider affine transforms:

$$z_p^i = s_p(z^i) = B_p z^i + b_p, \qquad \mathcal{S}_p(Z^n) = \{z_p^i : i = 1, \dots, n\}.$$

The class of equivariant estimates $\mathcal{K}_e(\mathcal{X}_{switch}^{\theta})$:

$$\hat{x}^n(\mathcal{S}_p(Z^n)) = s_p(\hat{x}^n(Z^n))$$

As a consequence:

$$\bar{x}^n(T_p(\theta)) \equiv s_p(\bar{x}^n(\theta)),$$

where $T_p(\theta)$: $\forall i \quad x(t^i;T_p(\theta)) = s_p(x(t^i;\theta)).$

$$\bar{x}^{n}(T_{p}(\theta)) \equiv s_{p}(\bar{x}^{n}(\theta)),$$

where $T_{p}(\theta)$: $\forall i \quad x(t^{i};T_{p}(\theta)) = s_{p}(x(t^{i};\theta)).$
 $\frac{\partial}{\partial p} \bar{x}^{n}(T_{p}(\theta)) = \frac{\partial}{\partial p} s_{p}(\bar{x}^{n}(\theta)),$

∜

$$\bar{x}^{n}(T_{p}(\theta)) \equiv s_{p}(\bar{x}^{n}(\theta)),$$

where $T_{p}(\theta)$: $\forall i \quad x(t^{i};T_{p}(\theta)) = s_{p}(x(t^{i};\theta)).$
 $\frac{\partial}{\partial p} \bar{x}^{n}(T_{p}(\theta)) = \frac{\partial}{\partial p} s_{p}(\bar{x}^{n}(\theta)),$
 \Downarrow

$$\frac{\partial}{\partial p} \, \bar{x}^n(T_p(\theta)) \Big|_{p=0} = \frac{\partial}{\partial p} \, s_p(\bar{x}^n(\theta)) \Big|_{p=0},$$

$$\bar{x}^{n}(T_{p}(\theta)) \equiv s_{p}(\bar{x}^{n}(\theta)),$$

where $T_{p}(\theta)$: $\forall i \quad x(t^{i};T_{p}(\theta)) = s_{p}(x(t^{i};\theta)).$
$$\frac{\partial}{\partial p} \bar{x}^{n}(T_{p}(\theta)) = \frac{\partial}{\partial p} s_{p}(\bar{x}^{n}(\theta)),$$

$$\frac{\partial}{\partial \theta} \bar{x}^n(\theta) \frac{\partial}{\partial p} T_p(\theta) \Big|_{p=0} = \frac{\partial}{\partial p} s_p(\bar{x}^n(\theta)) \Big|_{p=0} = \\ = \frac{\partial}{\partial p} B_p \Big|_{p=0} \bar{x}^n(\theta) + \frac{\partial}{\partial p} b_p \Big|_{p=0},$$

∜

$$\bar{x}^{n}(T_{p}(\theta)) \equiv s_{p}(\bar{x}^{n}(\theta)),$$
where $T_{p}(\theta)$: $\forall i \quad x(t^{i};T_{p}(\theta)) = s_{p}(x(t^{i};\theta)).$

$$\frac{\partial}{\partial p} \bar{x}^{n}(T_{p}(\theta)) = \frac{\partial}{\partial p} s_{p}(\bar{x}^{n}(\theta)),$$

$$\downarrow$$

$$\frac{\partial}{\partial \theta} \bar{x}^{n}(\theta)) \dot{T}_{0}(\theta) = \frac{\partial}{\partial p} s_{p}(\bar{x}^{n}(\theta))\Big|_{p=0} =$$

 $= \dot{B}_0 \,\bar{x}^n(\theta) + \dot{b}_0,$

>

∕.

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^n(Z^n) - x(t^n;\theta)) \left(\hat{x}^n(Z^n) - x(t^n;\theta) \right)^\mathsf{T} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right)^\mathsf{T} + \\ & + \left(\bar{x}^n(\theta) - x(t^n;\theta) \right) \left(\bar{x}^n(\theta) - x(t^n;\theta) \right)^\mathsf{T}, \end{split}$$

$$\min_{\hat{x}^n \in \text{Equiv}} \mathbf{E} \left\{ \left(\hat{x}^n(Z^n) - x(t^n; \theta) \right) (\ldots)^{\mathsf{T}} \right\} \succeq \\ \approx \min_{\substack{\hat{x}^n \in \text{Equiv}\\ \bar{x}^n = \mathbf{E} \{ \hat{x}^n \}}} \left(\left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta} \right) I(\theta)^{-1} (\ldots)^{\mathsf{T}} + \left(\bar{x}^n(\theta) - x(t^n; \theta) \right) (\ldots)^{\mathsf{T}} \right)$$

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - x(t^{n};\theta)) \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right)^{\mathsf{T}} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right)^{\mathsf{T}} + \\ & + \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right)^{\mathsf{T}}, \end{split}$$

$$\min_{\hat{x}^{n} \in \text{Equiv}} \mathbf{E} \left\{ \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right) \left(\dots \right)^{\mathsf{T}} \right\} \succcurlyeq \\
\approx \min_{\substack{\hat{x}^{n} \in \text{Equiv}\\ \bar{x}^{n} = \mathbf{E} \{ \hat{x}^{n} \}}} \left(\left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right) I(\theta)^{-1} (\dots)^{\mathsf{T}} + \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) (\dots)^{\mathsf{T}} \right) \succcurlyeq \\
\approx \min_{\substack{q \in \mathbb{R}^{2}, Q \in \mathbb{R}^{2 \times d}\\ q, Q: \ \hat{x}^{n} \in \text{Equiv}}} \left(Q I(\theta)^{-1} Q^{\mathsf{T}} + \left(q - x(t^{n};\theta) \right) \left(q - x(t^{n};\theta) \right)^{\mathsf{T}} \right)$$

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - x(t^{n};\theta)) \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right)^{\mathsf{T}} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right)^{\mathsf{T}} + \\ & + \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right)^{\mathsf{T}}, \end{split}$$

$$\min_{\hat{x}^{n} \in \text{Equiv}} \mathbf{E} \left\{ \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right) \left(\dots \right)^{\mathsf{T}} \right\} \not\succeq \\
\not\succeq \min_{\hat{x}^{n} \in \text{Equiv} \atop \bar{x}^{n} = \mathbf{E} \{ \hat{x}^{n} \}} \left(\left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right) I(\theta)^{-1} (\dots)^{\mathsf{T}} + \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) (\dots)^{\mathsf{T}} \right) \not\succeq \\
\not\succeq \min_{\substack{q \in \mathbb{R}^{2}, Q \in \mathbb{R}^{2 \times d} \\ q, Q: \ \hat{x}^{n} \in \text{Equiv}}} \left(Q I(\theta)^{-1} Q^{\mathsf{T}} + \left(q - x(t^{n};\theta) \right) \left(q - x(t^{n};\theta) \right)^{\mathsf{T}} \right)$$

$$\begin{split} \mathbf{E} \Big\{ (\hat{x}^{n}(Z^{n}) - x(t^{n};\theta)) \left(\hat{x}^{n}(Z^{n}) - x(t^{n};\theta) \right)^{\mathsf{T}} \Big\} &\succcurlyeq \\ & \succcurlyeq \left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right) I(\theta)^{-1} \left(\frac{\partial \bar{x}^{n}(\theta)}{\partial \theta} \right)^{\mathsf{T}} + \\ & + \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right) \left(\bar{x}^{n}(\theta) - x(t^{n};\theta) \right)^{\mathsf{T}}, \end{split}$$

$$\min_{\hat{x}^n \in \text{Equiv}} \operatorname{tr}\left\{\mathbf{E}\left\{\left(\hat{x}^n(Z^n) - x(t^n;\theta)\right)(\ldots)^{\mathsf{T}}\right\}\right\} \geqslant \\
\geqslant \min_{\substack{\hat{x}^n \in \text{Equiv}\\ \bar{x}^n = \mathbf{E}\{\hat{x}^n\}}} \operatorname{tr}\left\{\left(\frac{\partial \bar{x}^n(\theta)}{\partial \theta}\right) I(\theta)^{-1}(\ldots)^{\mathsf{T}} + \left(\bar{x}^n(\theta) - x(t^n;\theta)\right)(\ldots)^{\mathsf{T}}\right\} \geqslant \\
\geqslant \min_{\substack{q \in \mathbb{R}^2, Q \in \mathbb{R}^{2 \times d}\\ q, Q: \ \hat{x}^n \in \text{Equiv}}} \operatorname{tr}\left\{Q I(\theta)^{-1} Q^{\mathsf{T}} + \left(q - x(t^n;\theta)\right)(q - x(t^n;\theta))^{\mathsf{T}}\right\}$$

$$\min_{\hat{x}^n \in \text{Equiv}} \operatorname{tr} \left\{ \mathbf{E} \left\{ \left(\hat{x}^n (Z^n) - x(t^n; \theta) \right) (\ldots)^{\mathsf{T}} \right\} \right\} = \\
= \min_{\hat{x}^n \in \text{Equiv}} \mathbf{E} \left\{ \left(\hat{x}^n (Z^n) - x(t^n; \theta) \right)^2 \right\} \geqslant \\
\geqslant \min_{\substack{q \in \mathbb{R}^2, Q \in \mathbb{R}^{2 \times d} \\ q, Q: \ \hat{x}^n \in \text{Equiv}}} \operatorname{tr} \left\{ Q I(\theta)^{-1} Q^{\mathsf{T}} \right\} + (q - x(t^n; \theta))^2 > 0 \, !!! \,.$$

$$\begin{split} \min_{\hat{x}^n \in \text{Equiv}} \mathbf{E} \Big\{ (\hat{x}^n (Z^n) - x(t^n; \theta))^2 \Big\} \geqslant \\ \geqslant \min_{\substack{q \in \mathbb{R}^2, Q \in \mathbb{R}^{2 \times d} \\ q, Q : \ \hat{x}^n \in \text{Equiv}}} \operatorname{tr} \Big\{ Q \, I(\theta)^{-1} Q^{\mathsf{T}} \Big\} + (q - x(t^n; \theta))^2 \; . \end{split}$$

$$\begin{cases} \operatorname{tr} \{ Q I(\theta)^{-1} Q^{\mathsf{T}} \} + (q - x(t^n; \theta))^2 \to \min, \\ Q \dot{T}_0^k(\theta) = \dot{B}_0^k q + \dot{b}_0^k, \quad k \in 1, \dots, K. \end{cases}$$

Translation along Ox^n :

$$s_p(x) = x + \begin{bmatrix} p \\ 0 \end{bmatrix}$$
$$\dot{B}_0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad \dot{b}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$T_{p}(\theta) = T_{p} \left(\begin{bmatrix} x_{N0} & x_{E0} & \varphi_{0} & v_{0} & a_{0}^{ort} & a_{0}^{tng} & t_{1} & \dots \end{bmatrix}^{\mathsf{T}} \right) = \\ = \begin{bmatrix} x_{N0} + p & x_{E0} & \varphi_{0} & v_{0} & a_{0}^{ort} & a_{0}^{tng} & t_{1} \dots \end{bmatrix}^{\mathsf{T}},$$

 $\dot{T}_0(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$

Rotation:

$$s_p(x) = \begin{bmatrix} \cos(p) & -\sin(p) \\ \sin(p) & \cos(p) \end{bmatrix} x$$
$$\dot{B}_0 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \dot{b}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\dot{T}_0(\theta) = \begin{bmatrix} [x_{N0} \, x_{E0}]^\mathsf{T} \dot{B}_0 & 1 & 0 & 0 & 0 & \dots \end{bmatrix}^\mathsf{T}$$

Scale:

$$s_p(x) = \begin{bmatrix} p & 0\\ 0 & p \end{bmatrix} x$$
$$\dot{B}_0 = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \quad \dot{b}_0 = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

$$T_{p}(\theta) = T_{p} \left(\begin{bmatrix} x_{N0} & x_{E0} & \varphi_{0} & v_{0} & a_{0}^{ort} & a_{0}^{tng} & t_{1} & \dots \end{bmatrix}^{\mathsf{T}} \right) = \\ = \begin{bmatrix} px_{N0} & px_{E0} & \varphi_{0} & pv_{0} & pa_{0}^{ort} & pa_{0}^{tng} & t_{1} \dots \end{bmatrix}^{\mathsf{T}},$$

$$\dot{T}_0(\theta) = \begin{bmatrix} x_{N0} & x_{E0} & 0 & v_0 & a_0^{ort} & a_0^{tng} & 0 \dots \end{bmatrix}^\mathsf{T}$$

Equivariant Est. Transformation on the Plane

Equivariant Est. Transformation on the Plane

Equivariant Est. Transformation on the Plane

Equivariant Estimates. Attempt to Improve

Equivariant Estimates. Attempt to Improve

Linear Equivariant Estimates

The class of linear estimates \mathcal{K}_l

$$\hat{x}^n(Z^n) = \sum_{i=1}^n L_i z^i = LZ^n \,.$$

The class of linear equivariant estimates $\mathcal{K}_{el}(\mathcal{X}^{\theta}_{switch})$:

$$\mathcal{K}_{el}(\mathcal{X}^{\theta}_{switch}) = \mathcal{K}_l \cap \mathcal{K}_e(\mathcal{X}^{\theta}_{switch})$$

Coincidence

Theorem

If $W^i = \sigma^2 I$ (i = 1, ..., n), and $n \ge N \ge 2$, and the class $\mathcal{X}^{\theta}_{switch}$ admits the scale transformation (with $\dot{B}_0 = qI$, q > 0, $\dot{b}_0 = 0$) then

$$\inf_{\hat{x}_i \in \mathcal{K}_{el}(\mathcal{X}_{switch}^{\theta})} \mathbf{E} \left\{ \| \hat{x}_i(Z_i^x) - x(t_i) \|^2 \right\} = \\ = \inf_{\hat{x}_i \in \mathcal{K}_e(\mathcal{X}_{switch}^{\theta})} \mathbf{E} \left\{ \| \hat{x}_i(Z_i^x) - x(t_i) \|^2 \right\}.$$