Feedback strategies for controlled continuity equation

Ekaterina Kolpakova

Krasovskii Institute of Mathematics and Mechanics eakolpakova@gmail.com

October 26-30, 2020, 2020

Statement of the problem

Consider the multiagent system with the dynamics of each agent given by

$$
\dot{x}(t)=f(t, x(t), m(t), u(t, m(t))), x(s)=x_{0}, m(s)=m_{0} .
$$

Here $t \in[0, T], x \in \mathbb{T}^{d}, m(t) \in P^{2}\left(\mathbb{T}^{d}\right), u \in U \subset \mathbb{R}^{n}$ is a compact, $s \in[0, T]$.
Here and below \mathbb{T}^{d} denotes the d-dimensional torus: $\mathbb{T}^{d} \triangleq \mathbb{R}^{d} / \mathbb{Z}^{d}$, when $\mathcal{P}^{2}\left(\mathbb{T}^{d}\right)$ stands for the set of probabilities on \mathbb{T}^{d} with the finite second moment. We endow this space with the second Wasserstein metric W_{2}.

Continuity equation

The dynamics of the whole system obeys the continuity equation

$$
\frac{\partial m(t)}{\partial t}+\operatorname{div}(f(t, \cdot, m(t), u(t, m(t))) m(t))=0, \quad m(s)=m_{0}
$$

We assume that the all agent are influenced by the same control depending only on current time and current distribution of agents $m(t)$.

Continuity equation

The payoff functional is equal to

$$
J\left(t_{0}, m_{0}, u\right)=g(m(T)) .
$$

We maximize this functional on the set of admissible controls.

Assumptions

A1 The function f is continuous. There exists the constant $C_{0}: \forall t \in[0, T], x \in T^{d}, m(t) \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right), u \in U$ the following inequality is valid

$$
\|f(t, x, m, u)\| \leq C_{0}
$$

A2 $\left\|f(t, x, m, u)-f\left(t^{\prime}, x, m, u\right)\right\| \leq w_{f}\left(t-t^{\prime}\right), \forall t \in[0, T]$, $x \in T^{d}$. A3 $\left|g(m)-g\left(m^{\prime}\right)\right| \leq w_{g}\left(W_{2}\left(m, m^{\prime}\right)\right), m, m^{\prime} \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right)$, $u \in U$. A4 There exists constant $L>0: \forall t \in[0, T], x, x^{\prime} \in T^{d}$, $m, m^{\prime} \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right), u \in U$

$$
\left\|f(t, x, m, u)-f\left(t, x^{\prime}, m^{\prime}, u\right)\right\| \leq L\left(\left\|x-x^{\prime}\right\|+W_{2}\left(m, m^{\prime}\right)\right)
$$

In conditions A2, A3 ω_{f} and ω_{g} are modules of continuity. Denote \tilde{U} the set of relaxed controls.

u-stable function

Definition. We say that a lower semicontinuous function $\psi:[0, T] \times \mathcal{P}^{2}\left(\mathbb{T}^{d}\right) \rightarrow \mathbb{R}$ is u-stable if

- for any $m \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right), g(m) \leq \psi(T, m)$;
- for any $s, r \in[0, T], s<r, m_{0} \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right)$, there exists a relaxed control $\xi: \psi\left(s, m_{0}\right) \geq \psi\left(r, m\left(r, s, m_{0}, \xi\right)\right)$.

Additional assumptions

Consider the function $\rho(\varepsilon, t): \lim _{\varepsilon \rightarrow 0} \rho(\varepsilon, t)=0$. Let
$(s, m) \in[0, T] \times \mathcal{P}^{2}\left(\mathbb{T}^{d}\right), \nu \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right)$ be such that

$$
\begin{gathered}
W_{2}^{2}(m, \nu) \leq \rho(\varepsilon, s) \\
\psi(s, \nu)=\min \left\{\psi\left(s, m^{\prime}\right): m^{\prime} \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right), W_{2}^{2}\left(m, m^{\prime}\right) \leq \rho(\varepsilon, s)\right\}
\end{gathered}
$$

Here ψ is a u-stable function.
We shall suppose that

$$
W_{2}(m(r), m(s)) \leq C_{0}(r-s) \forall m(\cdot) .
$$

Main result

Theorem. Let $s, r \in[0, T], s \leq r, m_{0}, \nu_{0} \in \mathcal{P}^{2}\left(\mathbb{T}^{d}\right), \pi$ is an optimal plan between $m_{0}, \nu_{0} ; m(\cdot)=m\left(\cdot, s, m_{0}, u\right)$; $\nu(\cdot)=\nu\left(\cdot, s, \nu_{0}, \eta\right)$. Then

$$
\begin{gathered}
W_{2}^{2}(m(r), \nu(r)) \leq W_{2}^{2}\left(m_{0}, \nu_{0}\right)(1+4 L(r-s))+4 C_{0}^{2}(r-s)^{2}+ \\
4 \sqrt{d}\left(w_{f}(r-s)+L C_{0}(r-s)^{2}\right) .
\end{gathered}
$$

Thank you for attention!

