Об одном способе построения программной траектории сферического движения твердого тела

А.Е. Ламоткин, Н.Е. Мисюра, Е.А. Митюшов

Уральский федеральный университет

2020 г.

Задача разворота космического аппарата, остается одной из основных задач космической навигации.

Данной задаче посвящено множество публикаций, например:

1. Молоденков А. В. К решению задачи Дарбу // Изв. РАН. МТТ. 2007. № 2. С. 3 – 13.

2 Левский М. В. Оптимальное управление ориентацией космического аппарата // Изв. вузов. приборостроение. 2008. т. 51, № 5, С. 30 — 36.

3. Сапунков Я. Г., Молоденков А. В., Алгоритм оптимального по энергии разворота космического аппарата при произвольных граничных условиях // Мехатроника, автоматизация, управление, Том 16, № 8, 2015, С. 536 — 541.

4. Челноков Ю.Н. Кватернионные модели и методы динамики, навигации и управления движением / М.: ФИЗМАТЛИТ, 2011, 560 с. Подход основанный на решение задачи управления путем решения обратной задачи динамики изложен, например в:

1. Велищанский М.А. Реализация плоского поворота космического аппарата квазиоптимальным алгоритмом переориентации. // Наука и образование: Электронное научное изда-ние. 2012. №10. С. 397–412.

2. Ермошина О.В., Крищенко А.П., Синтез программных управлений ориентации космического аппарата// Изв. РАН. Теория и системы управления, 2000. №2. С. 155–162.

При данном подходе требуется найти программную траекторию разворота космического аппарата за время *T*, удовлетворяющую граничным условиям:

$$q(0) = q^0, \ q(T) = q^T, \ \Omega(0) = \Omega^0, \ \Omega(T) = \Omega^T,$$

Программное управление, реализующее программную траекторию, находится из динамических уравнений Эйлера:

$$\begin{cases} A\dot{\Omega}_1 + (C - B)\Omega_2\Omega_3 = M_1, \\ B\dot{\Omega}_2 + (A - C)\Omega_1\Omega_3 = M_2, \\ C\dot{\Omega}_3 + (B - A)\Omega_1\Omega_2 = M_3. \end{cases}$$

При решении ряда прикладных задач может оказаться полезным перейти от программной траектории в четырехмерном пространстве к её образу в трехмерном пространстве.

Множеству единичных кватернионов, задающих ориентацию, могут быть поставлены в соответствие точки шара радиусом π , этот факт отмечается в работе

Арнольд В.И. Геометрия комплексных чисел, кватернионов и спинов / Московский центр непрерывного математического образования. 2002, 40 с.

С учетом этого задача о нахождении программной траектории q(t) может быть заменена на задачу нахождения её трехмерного образа $\mathbf{r}(t)$ в шаре радиусом π .

Связь между кватернионами и точками шара описывается уравнениями:

$$\begin{cases} q_0(t) = \cos \frac{\sqrt{x_1^2(t) + x_2^2(t) + x_3^2(t)}}{2}, \\ q_k(t) = \frac{x_k(t)}{\sqrt{x_1^2(t) + x_2^2(t) + x_3^2(t)}} \sin \frac{\sqrt{x_1^2(t) + x_2^2(t) + x_3^2(t)}}{2}. \end{cases}$$

откуда

$$x_k(t)=rac{2q_k(t) rccos q_0}{\sqrt{1-q_0^2}}$$

А.Е. Ламоткин, Н.Е. Мисюра, Е.А. Митюшов Построение программной траектории

Равномерный эйлеров поворот твердого тела из положения q^0 в q^T за время T на гиперсфере S^3 может быть задан с помощью линейной интерполяции кватернионов

$$\mathsf{q}_{e}(t) = \frac{\sin(\arccos(\mathsf{q}^{0} \cdot \mathsf{q}^{T})(1 - \frac{t}{T}))}{\sin(\arccos(\mathsf{q}^{0} \cdot \mathsf{q}^{T}))}\mathsf{q}^{0} + \frac{\sin(\arccos(\mathsf{q}^{0} \cdot \mathsf{q}^{T})\frac{t}{T})}{\sin(\arccos(\mathsf{q}^{0} \cdot \mathsf{q}^{T}))}\mathsf{q}^{T}.$$

Для обеспечения "близости" образа $\mathbf{r}(t)$ программной траектории q(t) к образу эйлерова поворота q_e(t) потребуем, чтобы точка $\mathbf{r}_{\frac{T}{2}} = \mathbf{r}(\frac{T}{2})$ являлась образом точки q_e($\frac{T}{2}$). Для построения образа $\mathbf{r}(t)$ воспользуемся распространенным приемом поиска программной траектории в виде полинома. Для удовлетворения краевых условий и обеспечения "близости" получаемой траектории к эйлеровой достаточно представить её в виде полинома четвертой степени.

$$\mathbf{r}(t) = \sum_{k=0}^{4} \mathbf{a}_k \left(\frac{t}{T}\right)^k, \qquad (1)$$

где $\mathbf{a}_k, k = 0, \dots, 4$ — постоянные трехмерные векторы, определяемые граничными условиями и условием "близости" к эйлеровой траектории.

Граничные условия для образа программной траектории

$$\mathbf{r}_{0} = \begin{pmatrix} \frac{2q_{1}(0) \arccos q_{0}(0)}{\sqrt{1-(q_{0}(0))^{2}}} \\ \frac{2q_{2}(0) \arccos q_{0}(0)}{\sqrt{1-(q_{0}(0))^{2}}} \\ \frac{2q_{3}(0) \arccos q_{0}(0)}{\sqrt{1-(q_{0}(0))^{2}}} \end{pmatrix}, \quad \mathbf{r}_{T} = \begin{pmatrix} \frac{2q_{1}(T) \arccos q_{0}(T)}{\sqrt{1-(q_{0}(T))^{2}}} \\ \frac{2q_{2}(T) \arccos q_{0}(T)}{\sqrt{1-(q_{0}(T))^{2}}} \\ \frac{2q_{3}(T) \arccos q_{0}(T)}{\sqrt{1-(q_{0}(T))^{2}}} \end{pmatrix},$$

$$\dot{\mathbf{r}}_{0} = \begin{pmatrix} 2q_{1}(0) \left(\frac{q_{0}(0) \arccos q_{0}(0)}{1 - (q_{0}(0))^{\frac{3}{2}}} - \frac{1}{1 - (q_{0}(0))^{2}}\right) \dot{q}_{0}(0) + \frac{\arccos q_{0}(0)}{2\sqrt{1 - (q_{0}(0))^{2}}} \dot{q}_{1}(0) \\ 2q_{2}(0) \left(\frac{q_{0}(0) \arccos q_{0}(0)}{1 - (q_{0}(0))^{\frac{3}{2}}} - \frac{1}{1 - (q_{0}(0))^{2}}\right) \dot{q}_{0}(0) + \frac{\arccos q_{0}(0)}{2\sqrt{1 - (q_{0}(0))^{2}}} \dot{q}_{2}(0) \\ 2q_{3}(0) \left(\frac{q_{0}(0) \arccos q_{0}(0)}{1 - (q_{0}(0))^{\frac{3}{2}}} - \frac{1}{1 - (q_{0}(0))^{2}}\right) \dot{q}_{0}(0) + \frac{\arccos q_{0}(0)}{2\sqrt{1 - (q_{0}(0))^{2}}} \dot{q}_{3}(0) \end{pmatrix},$$

$$\dot{\mathbf{r}}_{\mathcal{T}} = \begin{pmatrix} 2q_1(\mathcal{T}) \begin{pmatrix} \frac{q_0(\mathcal{T}) \arccos q_0(\mathcal{T})}{1 - (q_0(\mathcal{T}))^{\frac{3}{2}}} - \frac{1}{1 - (q_0(\mathcal{T}))^2} \end{pmatrix} \dot{q}_0(\mathcal{T}) + \frac{\arccos q_0(\mathcal{T})}{2\sqrt{1 - (q_0(\mathcal{T}))^2}} \dot{q}_1(\mathcal{T}) \\ 2q_2(\mathcal{T}) \begin{pmatrix} \frac{q_0(\mathcal{T}) \arccos q_0(\mathcal{T})}{1 - (q_0(\mathcal{T}))^{\frac{3}{2}}} - \frac{1}{1 - (q_0(\mathcal{T}))^2} \end{pmatrix} \dot{q}_0(\mathcal{T}) + \frac{\arccos q_0(\mathcal{T})}{2\sqrt{1 - (q_0(\mathcal{T}))^2}} \dot{q}_2(\mathcal{T}) \\ 2q_3(\mathcal{T}) \begin{pmatrix} \frac{q_0(\mathcal{T}) \arccos q_0(\mathcal{T})}{1 - (q_0(\mathcal{T}))^{\frac{3}{2}}} - \frac{1}{1 - (q_0(\mathcal{T}))^2} \end{pmatrix} \dot{q}_0(\mathcal{T}) + \frac{\arccos q_0(\mathcal{T})}{2\sqrt{1 - (q_0(\mathcal{T}))^2}} \dot{q}_3(\mathcal{T}) \end{pmatrix}$$

,

1

Значения производных от координат кватернионной функции q(t) на предыдущем слайде находится из кинематических уравнений

$$egin{aligned} \dot{q}_0 &= -rac{1}{2}(q_1\Omega_1+q_2\Omega_2+q_3\Omega_3), \ \dot{q}_1 &= rac{1}{2}(q_0\Omega_1-q_3\Omega_2+q_2\Omega_3), \ \dot{q}_2 &= rac{1}{2}(q_0\Omega_2-q_1\Omega_3+q_3\Omega_1), \ \dot{q}_3 &= rac{1}{2}(q_0\Omega_3-q_2\Omega_1+q_1\Omega_2). \end{aligned}$$

$$\begin{aligned} \mathbf{a}_0 &= \mathbf{r}_0, \\ \mathbf{a}_1 &= T\dot{\mathbf{r}}_0, \\ \mathbf{a}_2 &= -5(\mathbf{r}_T - \mathbf{r}_0 - T\dot{\mathbf{r}}_0) + T(\dot{\mathbf{r}}_T - \dot{\mathbf{r}}_0) + 16(\mathbf{r}_{\frac{T}{2}} - \mathbf{r}_T - \frac{1}{2}T\dot{\mathbf{r}}_0), \\ \mathbf{a}_3 &= 14(\mathbf{r}_T - \mathbf{r}_0 - T\dot{\mathbf{r}}_0) - 3T(\dot{\mathbf{r}}_T - \dot{\mathbf{r}}_0) - 32(\mathbf{r}_{\frac{T}{2}} - \mathbf{r}_T - \frac{1}{2}T\dot{\mathbf{r}}_0), \\ \mathbf{a}_4 &= -8(\mathbf{r}_T - \mathbf{r}_0 + 2T\dot{\mathbf{r}}_0) + T(\dot{\mathbf{r}}_T - \dot{\mathbf{r}}_0) + 16(\mathbf{r}_{\frac{T}{2}} - \mathbf{r}_T - \frac{1}{2}T\dot{\mathbf{r}}_0). \end{aligned}$$

После чего, вычислив образ $\mathbf{r}(t)$, можем найти программную траекторию q(t).

На рисунке изображены траектории эйлеровых поворотов (красные) и программные траектории (синие)

Поворот происходит за время T = 10 с, при следующих граничных условиях:

a)
$$q^0 = (0.5, 0.5, 0.5, 0.5), q^T = (0.5, 0.5, -0.5, -0.5);$$

5) $q^0 = (0, 0, 1, 0), q^T = (0, 1, 0, 0);$ b) $q^0 = (0, 1, 0, 0), q^T = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0)$
 $\Omega^0 = (0.5, 0, 0), \ \Omega^T = (0, 0, -0.5)$

Графики функций $q_0(t), q_1(t), q_2(t), q_3(t)$

На рисунке представлены графики изменения координат кватерниона при движении по эйлеровой и программной траектории в случае б) $q^0 = (0,0,1,0), q^T = (0,1,0,0)$

Графики функций $\Omega_1(t), \ \Omega_2(t), \ \Omega_3(t)$

На рисунке представлены графики изменения проекций угловой скорости при движении по программной траектории в случае 6) $q^0 = (0,0,1,0), q^T = (0,1,0,0)$