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Notations

m be quantity of malignant cells,
h be quantity of drug,
f (h) be a therapy function describing the e�ect of drug on tumor cells,
u(t) be a restricted control,
T be the given �nal instance,
M be the maximum quantity of malignant cells in the body
compatible with life,
L be the maximum quantity of drug in the body,
Q be the maximum quantity of drug injected into the tumor per unit
time.
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Mathematical model

The process of interaction between tumor cells and drugs is described
by the following model, where time varies within t ∈ [0,T ]:

dm
dt

= g(m)− γmf (h), m(t0) = m0, γ − const > 0,

dh
dt

= −αh + u(t), h(t0) = h0, α− const > 0.

(1)
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Mathematical model

The tumor can grow according to the following laws:

1. g(m) = rm − θm ln(m) � Gompertz law, r , θ � const > 0,

2. g(m) = rm
[
1−

(
m
θ

)β]
� generalized logistic law,

r , θ, β � const > 0.
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Restrictions

The set of starting points in the model is considered with the
following restrictions:

t0 ∈ [0,T ], 0 < m0 < M, 0 ≤ h0 ≤ L.

Let us consider piecewise constant functions as admissible controls:

u(·) : [t0,T ] 7→ [0,Q].

It is assumed that the amount of drug introduced into the tumor per
unit time is restricted:

0 ≤ u(t) ≤ Q. (2)
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Therapy function

Consider a piecewise monotone, continuously di�erentiable therapy
function f (h) with the following properties:
A1. The function f (h) is positive de�nite on [0,L],

A2. The function f (h) has two maximum points ĥ1 and ĥ3 and one

minimum point ĥ2 such that

0 < ĥ1 < ĥ2 < ĥ3 < L, F = max
h∈[0,L]

f (h) = f (ĥ1) = f (ĥ3).

A3. The condition is valid: 0 < αĥi < Q, i = 1,2,3.
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Example of therapy function
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Statement of the problem

The problem of optimal control is to construct an admissible control
that minimizes the terminal cost function

1. for Gompertz law:

σ1(m(T )) = m2(T ; t0,m0,h0,u(·))→ inf
u(·)
, (3)

2. for the generalized logistic law:

σ2(m(T )) = mβ(T ; t0,m0,h0,u(·))→ inf
u(·)

. (4)

where m(t) = m(t ; t0,m0,h0,u(·)), t ∈ [t0,T ] � solution of the system
(1) with initial conditions (t0,m0,h0), generated by the in�uence of
admissible control u(t).
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Value function

We introduce the value function in the considered problem, which to
each initial state of the system (t0,m0,h0) ∈ [t0,T ]× [0,M]× [0,L]
sets the optimal result Vali (t0,m0,h0) according to (3) and (4).
The value function is as follows

1. for Gompertz law:

Val1(t0,h0,m0) = me−2θ(t−t0)

0 exp
[

2r
θ

(e−θ(t−t0) − 1)− 2γV (t0,h0)

]
,

2. for the generalized logistic law:

Val2(t0,h0,m0) =

θβmβ
0 e−βγV (t0,h0)

θβe−βr(T − t0) + βmβ
0 r
∫ T

t0
exp

[
−β(r(τ − t0) + γV (τ,h0(τ)))dτ

] .
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Value function

Where V (t ,h) there is an optimal result in the following reduced
optimal control problem:

dh
dt

= −αh + u(t), u ∈ [0,Q], h(t0) = h0,

Jt0,h0 (u(·)) =

∫ T

t0
f (h(t ; t0,h0,u(·)))dt → sup

u(·)
,

(t ,h) 7→ V (t ,h) = sup
u(·)

Jt0,h0 (u(·)).
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Optimal synthesis

The optimal synthesis in the considered problem (1), (3) and (1), (4)
has the form:

u0(t ,h) =



αĥ1, (t ,h) ∈ G1,

αĥ3, (t ,h) ∈ G2,

Q, (t ,h) ∈ Π1,

0, (t ,h) ∈ Π2,

0, (t ,h) ∈ Π3,

Q, (t ,h) ∈ Π4 \ Γ.
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Optimal synthesis
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Solvability set

Consider viability sets Wi :

1. In the problem (1), (3) the viability set has the form

W1 =

{
(t0,m0,h0) ∈ [0,T ]×[0,M]×[0,L] : Val1(t0,m0,h0) ≤ M2

}
,

M = e
r − γF
θ ,

2. In the problem (1), (4) the viability set has the form

W2 =

{
(t0,m0,h0) ∈ [0,T ]×[0,M]×[0,L] : Val2(t0,m0,h0) ≤ Mβ

}
,

M = θ

(
1− γF

r

)1
β
.
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Theorem

For W ∈ {W1,W2} the following statements are true:
1. For any points (t0,m0,h0) ∈W it is true that m0 ≤ M.
2. The set W is weakly invariant with respect to the di�erential
inclusion ẇ ∈ Y (w), where

w = (t ,m,h) 7→ Y (w) =

(
1, g(m)− γmf (h), −αh + [0,Q]

)
.

3. For any point w0 = (t0,m0,h0) /∈W and for any measurable
function u(·) : [t0,T ] 7→ [0,Q] there is such a point in time t∗ ∈ (t0,T ),
that the inequality holds:

m(t∗; t0,h0,m0,u(·)) > M.
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THANKS FOR ATTENTION!
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